Linkback Extension

Pingback & TrackBack
Clients and Servers

for the Yii PHP Framework

Developed for the Yii Community by
PBM Web Development

EENI

=
&< Linkback Extension

<<
Contents
TadgeTe [V o] o IR TP PP PP PPPT T PPPP 4
FRATUIES et r e e e e et e e e e et e e e e e eeees 4
B2 T T L4 To Yo TP PP P TP PPPPP R PPPP 4
LINKDACK OVEIVIEW.eeiiiiiiieeee et e e e e sttt e e e e s s s bbbt e e e e e e e s s saanbreeeas 4
PiNg INfOrmMation. ..o 5
2T 0= o - o] 5
TFACKBACK ettt et e e s e s e e e e 5
LICENSE et e s e s a s 6
ComMPAtibilitY .o, 6
Ta1 = Y oo B P PSP PP P PP PPPPRP 6
ConfigUIatioN ..o 7
LINKDACK SEIVET ...ttt ettt et st e s s e e st e e s s e e s s nneee e smres 7
LiNKDACKAULODISCOVEIY .. uvvutieeiiiiitiiiiiiiiititt s 7
LINKDACKCONTIOIIEE «....eeiiiiieeee et et e e st e e s smreee e saneee 8
LINKDACK CHENT ...ttt et e s st e e e st e e s st e e e s s mneeeeennes 8
LiNKbackClieNTBERAVIONciiiiiiiieeee ettt e s e e s 8
LINKDACK SEIVET .ottt ettt e st e e sttt e sttt e s snre e e e sanbeeeesanneeeenans 10
LiNkbackAULODISCOVEIYcciiiiiiiie e, 10
PUDIIC PrOPEITIES. . ettt nan 10
PUDBIIC METNOAS ..ottt st e st e e st e e e snreeeeeaas 11
Protected MethOdScooo i s e s e e 11
PrOPEItY DETAIIS .. uuuuueiiiiiiiiiiiti s 11
METNOA DETAIIS ...ttt et e ettt e e s et e e e st e e e saabe e e e s enreeeeeans 12
LINKDACKCONTIOIIEE ...ttt ettt e et e st e e s s bt e e e e abeeeeseneeeeenans 13
PUD LI C PrOPEITIES. . uueeiiiiiiitttitttttt e nnnn 14
PUDIIC METNOAS ...ttt e st e e s bt e e s snreeeeeaas 15
Protected MEthOdScooo ettt e e e e e 15
oY= 0 15
PrOPEItY DETAIIS. .. uuueeeiiiiiiiiii e nan 15
MELTNOM DETAIISeeeeeeiet ittt ettt e e sttt e e st e e e s sabb e e e s s abe e e e saabeeeesabeeeeeaans 19
EVENT DLAIIS ...veeeeeeeee ettt e e e e s e e e e e s s ee e e e e e s s eeeeas 20
2T o T =l o o [N

21

=
&< Linkback Extension

<<
101 o T [ol @1 [T=T o | AP PP PP PPPPPPPON 22
LiNkbackClieNtBENAVION........ciiiiiieeeee e e e e e e e e e e e e e e 22
PUD I C PrOPEIIES. ettt s 22
PUBIIC MEENOAS ... ettt e e e e s st et e e e e e e s nnreeeeeeeeeas 23
Protected METNOMASceiiiiiiiee et e e et e e e e e s s sarneeeeeeeeas 23
YT o PP PPPPPPPRN 23
PrOPEItY DELAIIS .. uuuuueeiiiiiiitiitii s 23
METNOM DETAIIS ...eeeneiiieeeeiiie ettt e st e e s e e s s e e e eaes 26
EVENT DELAINS «oeeeeiieeee et e e e e 26
Appendix A — Linkback Client Database Table SChemaouvvviiiiiiiiiiiiiiiieieeeeeeee 28
LINKDACKS TABIE «...eeeeeeiee ettt et e s st e e s e e s snreeeenans 28
LinkbackPings Table ... 28

Figures
Figure 1 - Example LinkbackAutoDiscover Configuration.........ccccccoeoeiiiioiiieiiiiicecccececeee e 7
Figure 2 - Example LinkbackController Configurationccccccoccoiiieiiiiiicce e 8
Figure 3 - Example LinkbackClientBehavior Configuration..........ccccceoeoiiiiiiiiiiiiiiic e 9
Figure 4 - Example LinkbackClientBehavior::linkback() Method Callccccooiiiiiiiiiiiiiiiiicicccccccce, 9

=] .
Linkback Extension

Introduction

Linkbacks (Pingbacks and TrackBacks) are a method by which authors can obtain notification when
other authors link to one of their documents, enabling them to track who is linking to them, and to
provide reciprocal links to the referring document.

The Linkback Extension provides a simple means for blogs to support both Pingbacks and
TrackBacks. It implements Pingback and TrackBack clients and servers, and inserts Pingback and
TrackBack auto-discovery code into blog posts.

Features

e Pingback 1.0 compliant client and server

e TrackBack 1.2 compliant client and server

e Automatic server auto-discovery code generation
e Blog system integration

e Simple installation and configuration

Definitions

The terms Linkback, Pingback, and TrackBack are often used colloquially and interchangeably. In this
document the following definitions are used:

| Term Definition

Linkback Pingback and/or TrackBack (see http://en.wikipedia.org/wiki/Linkback)
Pingback As defined at http://www.hixie.ch/specs/pingback/pingback
TrackBack As defined at http://www.sixapart.com/pronet/docs/trackback spec

Auto-discovery Code in the target document that provides the server's URL to the client.

Ping Notification by a Linkback client to a Linkback server.

Linkback Overview

While the underlying mechanisms for Pingbacks and TrackBacks differ (Pingbacks use an XML-RPC
call (client) and function (server), TrackBacks use a REST model), they both provide the same service,
i.e. notification to a document's author about a link by another author to the document, and the
process for both is similar.

In the description below, Alice's system is the client, Bob's the server.

1. Alice writes a post on her blog that contains a link to a post on Bob's blog. The permalink to
Alice's postis http://alice.example.com/posts/all-about-1linkbacks; the permalink
of Bob's postis http://bob.example.net/linkbacks.

2. Alice's blogging system parses the post and extracts all the external links. For each external link,
Alice's blogging system does the following:

http://www.hixie.ch/specs/pingback/pingback
http://www.sixapart.com/pronet/docs/trackback_spec
http://en.wikipedia.org/wiki/Linkback
http://www.hixie.ch/specs/pingback/pingback
http://www.sixapart.com/pronet/docs/trackback_spec

= . .
&< Linkback Extension

w

Requests the page referred to by the link. Typically the amount of the page is limited to a few
kilobytes.
4. Looks for Linkback auto-discovery code in the page. If no auto-discovery code is found Alice's
system goes to step 3 using the next link it found in step 2.
5. Extracts the Linkback server URL from the auto-discovery code and pings it; the ping containing
information about Alice's post.
6. Bob's system receives the ping sent by Alice's system.
7. Bob's system confirms that http://bob.example.net/linkbacks is a post on his blog.
8. Bob's system then requests the content of Alice's post,
http://alice.example.com/posts/all-about-linkbacks, to:
a. confirm it exists,
b. istext,
c. containsalinkto http://bob.example.net/linkbacks.
9. Itthen extracts any other information about Alice's post that is contained in the ping, stores this
in its database, and sends a status response.
10. If the response is success, Alice's system records the Linkback to prevent re-generation of the
request.

Alice's system repeats steps 3, 4, 5, and 10 for each external link found in step 2.

When a visitor requests Bob's post it uses the information stored to mention the Linkback.

Ping Information

One significant difference between Pingbacks and TrackBacks is the information contained in the
ping.

Pingback

A Pingback ping contains the source document URL and the target document URL; both are required.

TrackBack
A TrackBack ping contains:

e the source document URL (required)

e an excerpt from the source document (optional)
e the name of the source blog (optional)

e the title of the source document (optional)

A reference to the target document is contained in the TrackBack server URL; the format of the
TrackBack server URL is implementation specific (see LinkbackAutodiscovery for a description of the

Linkback extension implementation).

= . .
&< Linkback Extension

License

The Linkback Extension is free software. It is released under the terms of the following BSD
License.

Copyright © 2011 by PBM Web Development
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

e Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.

e Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

e Neither the name of PBM Web Development nor the names of its contributors may be used
to endorse or promote products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Compatibility
Yii
Tested with 1.1.7

Should work with 1.1.7 and above

Installation

1. Download the Linkback Extension from http://www.yiiframework.com/extension/linkback/

2. Extract the files and place them under the required directory; typically this will be in the
extensions directory of the application's blog module.

http://www.yiiframework.com/extension/linkback/

= . .
&< Linkback Extension

Configuration

The Linkback Extension consists of two parts: a Linkback server that accepts Linkback pings from
remote clients, and a Linkback client that generates Linkback pings to remote servers.

Linkback Server
The Linkback server consists of two parts, each separately configured:

e LinkbackAutoDiscovery — generates Pingback and TrackBack server auto-discovery code

e linkbackController —implements the Pingback and TrackBack servers

LinkbackAutoDiscovery

LinkbackAutoDiscovery generates the local Linkback server auto-discovery code and inserts it into
posts. Itis added as a filter to the controller action that displays posts

public filters() {
return array(
//0Other filter definitions
array(
"path.to.linkback.LinkbackAutoDiscovery +view',
‘url'=>array(
'model'=>"post"’,
"params’=>array(
'blog'=>".blog.slug’,
"post'=>".slug’

)

)s
//0ther filter definitions

)s

Figure 1 - Example LinkbackAutoDiscover Configuration
The configuration above adds the LinkbackAutoDiscover filter to the 'view' action, the model is
contained in the controller property 'post’, and has URL GET parameters 'blog', which takes the value

of the 'slug' attribute in the model's related model 'blog', and 'post' which takes the 'slug' attribute
of the model.

= . .
&< Linkback Extension

LinkbackController

LinkbackController implements the Pingback and TrackBack servers. It is configured using the
CWebApplication::controllerMap property in the application's configuration file (Yii’s default
configuration file is /protected/config/main.php):

return array(
// Other CWebApplication configuration
'controllerMap'=>array(

"linkback'=>array(
'class'=>"'path.to.LinkbackController',
"linkback'=>"'path.to.linkback.model",
‘params '=>array(

"urlParam'=>"'postModelAttribute"

)>
"post'=>"path.to.post.model",

‘rules’'=>array(
"pattern’'=>"'route’

)>
// Other LinkbackController Configuration
// See LinkbackController::Public Properties

)s

)>
// Other CWebApplication configuration

Figure 2 - Example LinkbackController Configuration

Linkback Client

LinkbackClientBehavior

LinkbackClientBehavior implements the Pingback and TrackBack clients. It is attached to the posts
controller using the CController: :behaviours() method; the
LinkbackClientBehavior::linkback() method is called from the action that displays a post.

Note: The post MUST be publicly visible, i.e. the post must be approved, published, etc.,
because the Linkback server may access it to prevent Linkback spamming by ensuring that a)
the source URL exists, and b) that the document at the URL (the post) contains the target URL.

http://www.yiiframework.com/doc/api/1.1/CWebApplication#controllerMap-detail
http://www.yiiframework.com/doc/api/1.1/CController#behaviors-detail

g Linkback Extension

Figure 3 - Example LinkbackClientBehavior Configuration

Figure 4 - Example LinkbackClientBehavior::linkback() Method Call

=] .
Linkback Extension

Linkback Server

The Linkback sever consist of two parts; LinkbackAutoDiscovery that add server auto-discovery code
to the <head/> element of posts, and LinkbackController that processes Linkback pings from clients.

Two Linkback servers are implemented; a Pingback server and a TrackBack server. The Pingback
server is compliant with the Pingback 1.0 specification
(http://www.hixie.ch/specs/pingback/pingback#compliant) and the TrackBack with the TrackBack
1.2 specification (http://www.sixapart.com/pronet/docs/trackback spec).

LinkbackAutoDiscovery

LinkbackAutoDiscovery » COutputProcessor » CFilterWidget »
CWidget » CBaseController » CComponent

LinkbackAutoDiscovery adds Pingback and/or TrackBack server auto-discovery code to the <head/>
element of posts.

Pingback server auto-discovery code consists of both an X-pingback HTTP header and a <link>
element (http://www.hixie.ch/specs/pingback/pingback#TOC2).

TrackBack server auto-discovery code is RDF enclosed in HTML comments in order that the page
validates (some validators choke on RDF embedded in XHTML)
(http://www.sixapart.com/pronet/docs/trackback spec). The trackback.ping property is set to the

URL of the TrackBack server with the relative URL of the post with respect to the root appended. For
example: if the URL to a post is http://example.com/posts/example-post, and the default TrackBack
server route is used, the trackback.ping property will be http://example.com/linkback/trackback/
posts/example-post.

Note: If a TrackBack server is being implemented, the owner component — the controller —

must have a publicly accessible property that contains the post model.

Public Properties

See COutputProcessor for inherited properties.

Name Type Description

model string The name of the owner property that contains the post model.
servers array Routes to the local Linkback servers.

titleAttribute string The model attribute that contains the document title.

url array URL to the document in the format of key=>value pairs where the

keys are the parameter names of CController::createAbsoluteUrl() -
route, params, schema, and ampersand - and the values are the
parameter values.

http://www.hixie.ch/specs/pingback/pingback#compliant
http://www.sixapart.com/pronet/docs/trackback_spec
http://www.yiiframework.com/doc/api/1.1/COutputProcessor
http://www.yiiframework.com/doc/api/1.1/CFilterWidget
http://www.yiiframework.com/doc/api/1.1/CWidget
http://www.yiiframework.com/doc/api/1.1/CBaseController
http://www.yiiframework.com/doc/api/1.1/CComponent
http://www.hixie.ch/specs/pingback/pingback#TOC2
http://www.sixapart.com/pronet/docs/trackback_spec
http://www.yiiframework.com/doc/api/1.1/COutputProcessor
http://www.yiiframework.com/doc/api/1.1/CController#createAbsoluteUrl-detail

=
&< Linkback Extension

'ﬂ

Public methods

See COutputProcessor for inherited methods.

Name Description

init() Initialises the widget.
processOutput() Processes the captured output.
Protected methods

Name Description

| addAutoDiscovery() Adds auto-discovery code for the defined servers.

Property Details

model

public string $model;

The name of the owner property that contains the model.

This property is only used in TrackBack auto-discovery code generation and then only if url['params']
references the model or titleAttribute is set.

Defaults to ‘post’

servers

public array $servers;

Routes to the local Linkback servers.

The array keys are the server types to generate auto-discovery code for; valid keys are
LinkbackAutoDiscovery::PINGBACK and LinkbackAutoDiscovery::TRACKBACK.

Array values are URL routes to the servers in the format of ControllerID/ActionID. See
CController::createAbsoluteUrl().

Defaults to array(self::PINGBACK=>'/linkback/pingback’,self:: TRACKBACK=>"/linkback/trackback’')

titleAttribute
public string $titleAttribute;

The model attribute that contains the document title.
This property is only used in TrackBack auto-discovery code generation and is optional.

Defaults to 'title'

url

public array $url;

URL to the document in the format of key=>value pairs where the keys are the parameter names of
CController::createAbsoluteUrl() - route, params, schema, and ampersand, and the values are the

parameter values; omit keys that take the default values.

http://www.yiiframework.com/doc/api/1.1/COutputProcessor
http://www.yiiframework.com/doc/api/1.1/CExtController
http://www.yiiframework.com/doc/api/1.1/CExtController
http://www.yiiframework.com/doc/api/1.1/CExtController
http://www.yiiframework.com/doc/api/1.1/CController#createAbsoluteUrl-detail
http://www.yiiframework.com/doc/api/1.1/CController#createAbsoluteUrl-detail

= . .
&< Linkback Extension

The params value is an array of GET parameters in name=>value pairs. If the value of a GET
parameter starts with a dot (.) it is an attribute path relative to the model that is resolved at run
time; for example array('post'=>".id') will use the id attribute of the model for the post parameter.

This property is only used in TrackBack auto-discovery code generation.

Defaults to array();

Method Details

addAutoDiscovery()

public string addAutoDiscovery(string $content);

Scontent string The content to which auto-discovery code is added

{return} string The content with auto-discovery code added

Adds auto-discovery code for the defined servers. The auto-discovery code is placed at the end of
the <head/> element.

If the Pingback server is specified the X-Pingback HTTP header and the pingback link element are
added.

If the TrackBack server is specified, TrackBack RDF enclosed in HTML comments is added.
init()

public void init();

Initialises the widget.

processOutput()
public void processOutput();

Processes the captured output.

Adds Linkback server auto-discovery code to the output.

= . .
&< Linkback Extension

LinkbackController

LinkbackController » CExtController » CController » CBaseController
» CComponent

LinkbackController implements the Pingback and TrackBack servers; these accept Linkback pings
from clients and store the Linkback information for successful pings in a user defined model.

The Pingback server is compliant with the Pingback 1.0 specification
(http://www.hixie.ch/specs/pingback/pingback#compliant).

The TrackBack server is compliant with the TrackBack 1.2 specification
(http://www.sixapart.com/pronet/docs/trackback spec).

A client sends a ping to either the Pingback or TrackBack server (it should not ping both). The pinged
server checks that the target URL (which points to the document being linked to by the source
document) in the ping exists, that the source URL (which points to the source document that
generated the ping) exists and contains the target URL, and that a Linkback between the two
documents does not currently exist.

The target URL is parsed in order to check that it points to a valid document; the Sparams and Srules
parameters tell LinkbackController how to do this:

e Srulesis an array of URL parsing rules; these are exactly the same us CUrIManager rules; in
fact these rules will be the same as those relevant to post URLs in the application
configuration.

e Sparams maps the GET parameters in the URL to attributes of the post model or related
models.

For example: If the target URL of a post is http://example.com/posts/post-title, Srules will be
something like array ('posts/<pslug:([a-z]+((-|_)[\w]+)*)*>'=>"posts/view'), which
routes the URL to the 'view' action of the 'posts' controller, and puts 'post-title' into

$_GET['pslug'].

In order that LinkbackController can check the target post exists, the GET parameters must be
mapped to post model attributes; so taking the same example Sparams would look something like
array('pslug'=>"'slug'), which tells LinkbackController that $_GET["pslug'] maps to the
'slug' attribute of the model defined in Spost.

A more complex example is where there is more than one blog; here the URL of a post might be
http://example.com/blogs/blog-title/post-title. Srules will be something like array('blogs/<bslug:([a-
z]+((- |)N\w]+)*)*>/<pslug:([a-z]+((-| _)[\w]+)*)*>'=>'blogs/posts/view') which routes the URL to the
'view' action of the 'posts' controller in the 'blogs' module, and puts 'blog-title' into

$ GET['bslug'] and 'post-title'into $_GET['pslug']. Sparams will look something like
array('pslug'=>"'slug', 'bslug'=>'blog.slug'), whichmaps$_GET['pslug']to the 'slug'
attribute of the model defined in Spost, and $_GET['bslug’]Jto the 'slug' attribute of model
defined by the 'blog' relationship of the model defined in Spost..

If the ping is successful the server creates a record of the Linkback in an application defined model.
The server maps internal properties to attributes of the model (see linkbackAttributes). As a
minimum the model must store a reference to the document pointed to by the target URL, the

http://www.yiiframework.com/doc/api/1.1/CExtController
http://www.yiiframework.com/doc/api/1.1/CController
http://www.yiiframework.com/doc/api/1.1/CBaseController
http://www.yiiframework.com/doc/api/1.1/CComponent
http://www.hixie.ch/specs/pingback/pingback#compliant
http://www.sixapart.com/pronet/docs/trackback_spec

=
T
<

Linkback Extension

source URL, and the type of ping in order to make the link between them; it may store additional

information to provide human readable information about the Linkback that may be available in the

ping. The intent is to allow Linkbacks to be stored in the same database table as user submitted

comments if required.

Public Properties

See CExtController for inherited properties.

Note: If an exception is raised by the server it sent as a response to the client with the error
code = 0x810C (Application error). If Yii is in debug mode (YII_DEBUG
message is also sent, otherwise the message is set to "Application Error".

TRUE) the exception

The server will raise an exception, for example, if a required property is undefined.

Name Type Description
attributeMap | array Maps LinkbackController internal properties to linkback model
attributes.
content string Template for content to be stored when a Linkback is registered.
contentTypes array Content types from which Linkbacks are accepted.
encoding string Response encoding.
excerptEnding string The ending added to TrackBack excerpts.
excerptExact boolean Whether excerptLength is exact.
excerptlLength integer The maximum length of TrackBack excerpts.
importPaths mixed Paths to import.
linkback string Path to the model that stores Linkbacks.
arams array Maps target URL parameters to post model attributes.
post string Path to the model that stores linkbacks.
rules array Target URL routing rules.
scenario string The Linkback model scenario when a Linkback is registered.
status mixed The value given to the linkback model's status attribute.
title string Template for the title to be saved when a Linkback is registered.
validate boolean Whether validation is performed when the Linkback is registered.

Page 14 of 28

P1BMI[]|

http://www.yiiframework.com/doc/api/1.1/CExtController

= . .
&< Linkback Extension

Public methods

See CExtController for inherited methods.

Name Description

init() Initializes the controller.

actionPingback() The Pingback server.
actionTrackback() The TrackBack server.

Protected methods

See CExtController for inherited methods.

Description

linkbackRegistered() = This method is invoked when a Linkback has been registered.

Events

Name Description

H

onlLinkbackRegistered This event is raised when a Linkback has been registered.

Property Details

attributeMap

public array $attributeMap;

Maps LinkbackController internal properties to linkback model attributes.

Each entry maps an internal property to a linkback model attribute; the key is the LinkbackController
property, the value is the linkback model attribute name. Omit any non-required properties that do
not have an equivalent attribute in your linkback model.

LinkbackController internal properties are:

e sourceUrl - The source URL (required)

e targetld - The id of the target post (required)

e type - The type of Linkback; pingback or trackback (required)

e blogName - The source blog name (Trackback pingss only)

e content - The content for the Linkback. content defines the template.

e ipAddress - The source IP address
e status - The status of this record on save. Defined by status.
e title - The title of the source post. title defines the template.

http://www.yiiframework.com/doc/api/1.1/CExtController
http://www.yiiframework.com/doc/api/1.1/CExtController

= . .
&< Linkback Extension

Defaults to array(
'sourceUrl' =>'url’,
‘targetld’ =>'post id’,
type’ =>'type’,
'blogName' =>'author’,

‘content’ =>'content’,
'ipAddress' =>'ip_address’,
'status’ =>'status’,
'title’ =>'title’

)

content

public string $content;

Template for the linkback model's content attribute. The resulting string is saved in the linkback
model's content attribute when a Linkback is registered.

See attributeMap for details on how to specify the linkback model's content attribute.
The following placeholders are recognised and will be replaced:

o {excerpt}- An excerpt from the source (TrackBacks only and excerpt must be in the ping).

{blogName} - The source blog name (TrackBacks only and blog_name must be in the ping).

{sourceUrl} - The source post URL.

{title} - Either the title of the source or, if the title is not given, the source URL.
{type} - The type of Linkback; Pingback or TrackBack.

To make a string containing a placeholder optional (i.e. rendered only if the placeholder has a value)

enclose it in square brackets. Escape square brackets that are required in the output with a
backslash.

Example: "{type} from {title}[\n\n{excerpt}]" is the equivalent of '{type} from {title}' if excerpt is
empty.

Defaults to "{type} from {title}[\n\n{excerpt}]"

contentTypes

public array $contentTypes;

Content types from which Linkbacks are accepted.

Defaults to array('text/html’, 'text/xml’, ‘application/xhtml+xml’)
encoding

public string $encoding;

Response encoding.

Defaults to 'utf-8'

= . .
&< Linkback Extension

excerptEnding
public string SexcerptEnding;
The ending added to TrackBack excerpts.

excerptlength includes the length of this property, i.e. the excerpt text will be shortened by the
length of this property.

Excerpts are only sent in TrackBack pings.

Defaults to '..'

excerptExact

public boolean $excerptExact;

Whether the length of TrackBack excerpts is exact.
Only valid if excerptLength is given.

If FALSE the excerpt is truncated on a word boundary such that the excerpt length is less than or
equal to excerptlLength.

If TRUE the excerpt is truncated to exactly excerptLength.
Excerpts are only sent in TrackBack pings.

Defaults to FALSE

excerptLength
public integer $excerptLength;
The maximum length of TrackBack excerpts.

Defaults to 255

importPaths

public mixed $importPaths;

Use to import model inheritances for post and linkback models if required. Leave empty if the
models directly extend CActiveRecord or import required inheritances themselves.

An array or comma delimited string of path aliases.

Defaults to NULL
linkback
public string $linkback;

Path to the model that stores Linkbacks. If the model is imported in importPaths this property need
only be the model class name.

This property is required.

Defaults to NULL

= . .
&< Linkback Extension

params
public array $params;
Maps target URL parameters to post model attributes.

The format is 'URL param'=>'post model attribute'. Related model attributes are specified using dot
notation; e.g. blog.id is the 'id" attribute of the model specified in the 'blog' relationship of the 'post’
model.

This property is required.

Defaults to NULL

post

public string $post;

Path to the model that stores posts. If the model is imported in importPaths this property need only
be the model class name.

This property is required.

Defaults to NULL

rules

public array $rules;

Target URL routing rules (pattern=>route).

This property is required.

Defaults to NULL

scenario

public string $scenario;

The linkback model scenario when a Linkback is registered.

Use this to ensure the Linkback is not validated against certain linkback model validation rules by
setting the value of the rule's 'on' property. For example, if the linkback model is also used for user
comments you may have CAPTCHA validation; a Linkback should not be validated against such a rule.

All validation can be turned off by setting validate FALSE.

Defaults to "linkback"

status
public mixed $status;
The value given to the Linkback's status attribute.

If specified in attributeMap, this value will be stored in the linkback model's attribute defined by
attributeMap['status'] and should be set to a value that indicates that the Linkback is approved
and/or can be displayed.

Defaults to "approved"

= . .
&< Linkback Extension

title

public string $title;

Template for the linkback model's title attribute. The resulting string is stored in the linkback
model's title attribute when a Linkback is registered.

See attributeMap for details on how to specify the linkback model's title attribute.
The following placeholders are recognised and will be replaced:

e {blogName} - The source blog name (TrackBacks only and must be in the ping).
e {sourceUrl}- The source post URL.
o {title} - Either the title of the source or the source URL if the title is not given.

To make a string containing a placeholder optional (i.e. rendered only if the placeholder has a value)
enclose it in square brackets. Escape square brackets that are required in the output with a
backslash.

Example: "{title}]@{blogName}]" is the equivalent of '{title} if blogName is empty.
Defaults to "ftitle}[@{blogName }]"

validate

public boolean $validate;

Whether validation is performed when the Linkback is registered.

Defaults to TRUE
Method Details

init()

public void init()
Initialises the controller.

actionPingback()

public void pingback()
Implements the Pingback server.

actionTrackback()

public void actionTrackback()

Implements the TrackBack server.

= . .
&< Linkback Extension

linkbackRegistered()
protected void linkbackRegistered(CModel $target)

$target CModel The target post

This method is invoked when a Linkback has been registered. The default implementation raises the
onlinkbackRegistered event.

onLinkbackRegistered()

public void onLinkbackRegistered(CEvent $event)
$event CEvent The event parameter

This event is raised when a Linkback has been registered.
Event Details

linbackRegistered

This event is raised when a Linkback has been registered.

Parameters

Parameters are an array of key=>value pairs.

name string The name of the event; 'onLinkbackRegistered'

target CModel The target document

vage 200128 PB[M|[l|

=] .
Linkback Extension

Response Codes

Both the Pingback and TrackBack server response codes are those defined in the Pingback 1.0
specification and Specification for Fault Code Interoperability, version 20010516, plus three

application defined codes (the Trackback specification only defines the response code for a
successful ping; other responses are implementation defined); they are listed below.

| Response Code Description Specification
0 | 0x0000 | Success - TrackBack only (lack of a code denotes success | TrackBack
for a Pingback)
16 0x0010 Source URI does not exist. Pingback
17 0x0011 Source URI does not link to target URI. Pingback
18 0x0012 Source URI not specified. Application
32 0x0020 Target URI does not exist. Pingback
33 0x0021 Target URI cannot be used. Pingback
48 0x0030 Linkback already registered. Pingback
49 0x0031 Access denied. Pingback
50 0x0032 Linkback not registered. Application
51 0x0033 Invalid content type. Application
-32700 0x8044 xmlrpc parse error; not well formed. SFCI
-32600 0x80A8 Server error. Invalid xml-rpc; not conforming to spec. SFCI
-32601 0x80A7 Server error. Requested method not found. SFCI
-32602 0x80A6 Server error. Invalid method parameters. SFCI
-32500 0x810C Application error (details of the error are in the message) SFCI

Note: Server errors are logged. I

WARNING: If you have debug turned on that outputs to the browser, server responses may
be seen by clients as non-well formed XML due to the extra content.

http://www.hixie.ch/specs/pingback/pingback
http://www.hixie.ch/specs/pingback/pingback
http://xmlrpc-epi.sourceforge.net/specs/rfc.fault_codes.php

= . .
&< Linkback Extension

Linkback Client

LinkbackClientBehavior

|m LinkbackClientBehavior » CBehavior » CComponent

LinkbackClientBehavior implements Pingback and TrackBack clients.

The Pingback client is compliant with the Pingback 1.0 specification
(http://www.hixie.ch/specs/pingback/pingback#compliant).

The TrackBack client is compliant with the TrackBack 1.2 specification
(http://www.sixapart.com/pronet/docs/trackback spec).

Posts are parsed to extract external links which are then searched for Pingback or TrackBack server
auto-discovery code; if a server is found a Linkback ping is sent to it. If the Linkback ping is
successful it is recorded to prevent further pings being sent to the server about the post. The
Linkback is also registered if the sever response code to a Pingback ping is 0x0030 (Linkback already
registered).

LinkbackClientBehavior uses two database tables that are automatically created if they do not exist;
these record successful Linkbacks to prevent further pings for them, and which posts are currently
pinging to prevent duplicate pings if the server accesses the post when pinged. The schema for
these is are given in Appendix A — Linkback Client Database Table Schema.

LinkbackClientBehavior sends server responses to the Yii::trace() method to assist debugging.

Public Properties

See CBehavior for inherited properties.

Name Type Description

attributes mixed The post attributes parsed for external links.
blogName string The name of the blog.

encoding string Pingback ping encoding.

excerptAttribute string The post attribute used for TrackBack excerpts.

excerptDelimiter string The string used to truncate TrackBack excerpts.
excerptEnding string The ending added to TrackBack excerpts.

excerptExact boolean Whether excerptLength is exact.

excerptLength integer The maximum length of TrackBack excerpts.

linkbacks mixed The types of Linkbacks we can send.

linkbacksTable string The name of the table used to record successful Linkbacks.

http://www.yiiframework.com/doc/api/1.1/CBehavior
http://www.yiiframework.com/doc/api/1.1/CComponent
http://www.hixie.ch/specs/pingback/pingback#compliant
http://www.sixapart.com/pronet/docs/trackback_spec
http://www.yiiframework.com/doc/api/1.1/YiiBase#trace-detail
http://www.yiiframework.com/doc/api/1.1/CBehavior

=
&< Linkback Extension

v
‘ Name Type Description
pingsTable string The name of the table used to record current pings.
titleAttribute string The post title attribute.
Public methods

See CBehavior for inherited methods.

‘ Name Description
attach() Attaches the behavior object to the component.
linkback() Generate pings.

Protected methods

See CBehavior for inherited methods.

Description

linkbackRegistered() = This method is invoked when a Linkback has been registered.

Events

Description

onlLinkbackRegistered This event is raised when a Linkback has been registered.

Property Details

attributes

public mixed Sattributes;

The post attributes parsed for external links.
Either an array of attribute names or a string that is a comma delimited list of attribute names.

URLs found in these attributes are searched for Linkback server auto-detect code and a ping sent to
the server if found.

The content of these attributes must be visible in the post when it is read.

Defaults to 'content’

http://www.yiiframework.com/doc/api/1.1/CBehavior
http://www.yiiframework.com/doc/api/1.1/CBehavior

= . .
&< Linkback Extension

blogName

public string SblogName;

The name of the blog.

Set empty to not send the blog name.

The blog name can also be set "on the fly" when generating Linkbacks for a given post (see

linkback()).

The blog name is only sent in TrackBack pings.
Defaults to NULL

encoding

public string encoding;

Pingback ping encoding.

Defaults to 'utf-8'

excerptAttribute

public string SexcerptAttribute;

The post attribute used for TrackBack excerpts.
Excerpts are only sent in TrackBack pings.
Defaults to 'content’

excerptDelimiter

public string SexcerptDelimiter;

The string used to truncate TrackBack excerpts.

The excerpt will be up to and including the first occurrence of the delimiter; this makes it easy to —
for example — use the first sentence as the excerpt. The excerpt may be further truncated to

excerptlLength.

Set empty not to truncate excerpts using a delimiter.
Excerpts are only sent in TrackBack pings.

Defaults to "'

excerptEnding

public string SexcerptEnding;

The ending added to TrackBack excerpts.

excerptLength includes the length of this property, i.e. the excerpt text will be shortened by the
length of this property.

Excerpts are only sent in TrackBack pings.

Defaultsto ...

= . .
&< Linkback Extension

excerptExact

public boolean SexcerptExact;

Whether the length of TrackBack excerpts is exact.
Only valid if excerptLength is given.

If FALSE the excerpt is truncated on a word boundary such that the excerpt length is less than or
equal to excerptlLength.

If TRUE the excerpt is truncated to exactly excerptLength.
Excerpts are only sent in TrackBack pings.
Defaults to FALSE

excerptLength

public integer SexcerptLength;

The maximum length of TrackBack excerpts.
Set empty not to truncate excerpts.
Excerpts are only sent in TrackBack pings.
Defaults to 255

linkbacks

public mixed Slinkbacks;

The types of Linkbacks we can send.

Either an array or a comma delimited string of Linkback types. Either an array or a comma delimited
string of Linkback types. Servers are searched for in the order given; the first discovered server is
used.

Valid Linkback types are 'pingback' and 'trackback'.
Defaults to 'pingback, trackback'

linkbacksTable
public string SlinkbacksTable;

The name of the table used to record successful Linkbacks.

Defaults to 'linkbacks'

pingsTable
public string SpingsTable;

The name of the table used to record current pings.

Defaults to 'linkback_pings'

= . .
&< Linkback Extension

titleAttribute
public string StitleAttribute;

The post title attribute.
Set empty to not send the title.
The post title is only sent in TrackBack pings.

Defaults to 'title'
Method Details

attach()
public void attach(CComponent Sowner)

Attaches the behavior object to the component. Sets the owner property, attaches event handlers

as declared in events, and creates the linkbackTable and pingsTable if they do not exist. Make sure
you call the parent implementation if you override this method.

linkback()

public void linkback(CModel Spost, string SsourceUrl , SblogName=null);

Spost CModel The post

SsourceUrl string The absolute URL to the post

SblogName string The name of the blog. If set, this overwrites the blog name set in

the configuration. Used in multi-blog applications where the blog is
determined from the post.

Generates Linkback pings to external URLs in the post that have a Linkback server.
linkbackRegistered()
protected void linkbackRegistered(CModel $post, string $targeturl)

$post CModel The post that generated the linkback
$targeturl string The target URL of the ping

This method is invoked when a Linkback has been registered. The default implementation raises the
onlLinkbackRegistered event.

onLinkbackRegistered()

public void onLinkbackRegistered(CEvent $event)
$event CEvent The event parameter
This event is raised when a Linkback has been registered.

Event Details

onLinbackRegistered

This event is raised when a Linkback has been registered.

http://www.yiiframework.com/doc/api/1.1/CComponent
http://www.yiiframework.com/doc/api/1.1/CBehavior#owner
http://www.yiiframework.com/doc/api/1.1/CBehavior#events
http://www.yiiframework.com/doc/api/1.1/CModel
http://www.yiiframework.com/doc/api/1.1/CModel

= . .
&< Linkback Extension

Parameters

Parameters are an array of key=>value pairs.

name string The name of the event; 'onLinkbackRegistered'.
post CModel The source post.
targetUrl String The target URL.

Page 27 of 28

P1BMI[]|

a Linkback Extension

<—

Appendix A - Linkback Client Database Table Schema

Linkbacks Table

LinkbackPings Table

Page 28 of 28 EBMI“I

